- 10. Prove that two diagonalizable matrices are simultaneously diagonalizable, that is, that there is an invertible matrix P such that PAP^{-1} and PBP^{-1} are both diagonal, if and only if AB = BA.
- *11. Let A be a finite abelian group, and let $\varphi: A \longrightarrow \mathbb{C}^{\times}$ be a homomorphism which is not the trivial homomorphism ($\varphi(x) = 1$ for all x). Prove that $\sum_{a \in A} \varphi(a) = 0$.
 - 12. Let A be an $m \times n$ matrix with coefficients in a ring R, and let $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be left multiplication by A. Prove that the following are equivalent:
 - (i) φ is surjective;
 - (ii) the determinants of the $m \times m$ minors of A generate the unit ideal;
 - (iii) A has a right inverse, a matrix B with coefficients in R such that AB = I.
- *13. Let (v_1, \ldots, v_m) be generators for an *R*-module *V*, and let *J* be an ideal of *R*. Define *JV* to be the set of all finite sums of products $av, a \in J, v \in V$.
 - (a) Show that if JV = V, there is an $n \times n$ matrix A with entries in J such that $(v_1, \ldots, v_m)(I A) = 0$.
 - (b) With the notation of (a), show that $det(I A) = 1 + \alpha$, where $\alpha \in J$, and that det (I A) annihilates V.
 - (c) An *R*-module V is called *faithful* if rV = 0 for $r \in R$ implies r = 0. Prove the Nakayama Lemma: Let V be a finitely generated, faithful *R*-module, and let J be an ideal of R. If JV = V, then J = R.
 - (d) Let V be a finitely generated R-module. Prove that if MV = V for all maximal ideals M, then V = 0.
- *14. We can use a pair x(t), y(t) of complex polynomials in t to define a complex path in \mathbb{C}^2 , by sending $t \leftrightarrow (x(t), y(t))$. They also define a homomorphism $\varphi: \mathbb{C}[x, y] \longrightarrow \mathbb{C}[t]$, by $f(x, y) \leftrightarrow f(x(t), y(t))$. This exercise analyzes the relationship between the path and the homomorphism. Let's rule out the trivial case that x(t), y(t) are both constant.
 - (a) Let S denote the image of φ . Prove that S is isomorphic to the quotient $\mathbb{C}[x, y]/(f)$, where f(x, y) is an irreducible polynomial.
 - (b) Prove that t is the root of a monic polynomial with coefficients in S.
 - (c) Let V denote the variety of zeros of f in \mathbb{C}^2 . Prove that for every point $(x_0, y_0) \in V$, there is a $t_0 \in \mathbb{C}$ such that $(x_0, y_0) = (x(t_0), y(t_0))$.