10. Prove that two diagonalizable matrices are simultaneously diagonalizable, that is, that there is an invertible matrix P such that $P A P^{-1}$ and $P B P^{-1}$ are both diagonal, if and only if $A B=B A$.
*11. Let A be a finite abelian group, and let $\varphi: A \longrightarrow \mathbb{C}^{\times}$be a homomorphism which is not the trivial homomorphism $(\varphi(x)=1$ for all $x)$. Prove that $\sum_{a \in A} \varphi(a)=0$.
11. Let A be an $m \times n$ matrix with coefficients in a ring R, and let $\varphi: R^{n} \longrightarrow R^{m}$ be left multiplication by A. Prove that the following are equivalent:
(i) φ is surjective;
(ii) the determinants of the $m \times m$ minors of A generate the unit ideal;
(iii) A has a right inverse, a matrix B with coefficients in R such that $A B=I$.
*13. Let $\left(v_{1}, \ldots, v_{m}\right)$ be generators for an R-module V, and let J be an ideal of R. Define $J V$ to be the set of all finite sums of products $a v, a \in J, v \in V$.
(a) Show that if $J V=V$, there is an $n \times n$ matrix A with entries in J such that $\left(v_{1}, \ldots, v_{m}\right)(I-A)=0$.
(b) With the notation of (a), show that $\operatorname{det}(I-A)=1+\alpha$, where $\alpha \in J$, and that $\operatorname{det}(I-A)$ annihilates V.
(c) An R-module V is called faithful if $r V=0$ for $r \in R$ implies $r=0$. Prove the Nakayama Lemma: Let V be a finitely generated, faithful R-module, and let J be an ideal of R. If $J V=V$, then $J=R$.
(d) Let V be a finitely generated R-module. Prove that if $M V=V$ for all maximal ideals M, then $V=0$.
*14. We can use a pair $x(t), y(t)$ of complex polynomials in t to define a complex path in \mathbb{C}^{2}, by sending $t \leadsto \longrightarrow(x(t), y(t))$. They also define a homomorphism $\varphi: \mathbb{C}[x, y] \longrightarrow \mathbb{C}[t]$, by $f(x, y) \leadsto \leadsto f(x(t), y(t))$. This exercise analyzes the relationship between the path and the homomorphism. Let's rule out the trivial case that $x(t), y(t)$ are both constant.
(a) Let S denote the image of φ. Prove that S is isomorphic to the quotient $\mathbb{C}[x, y] /(f)$, where $f(x, y)$ is an irreducible polynomial.
(b) Prove that t is the root of a monic polynomial with coefficients in S.
(c) Let V denote the variety of zeros of f in \mathbb{C}^{2}. Prove that for every point $\left(x_{0}, y_{0}\right) \in V$, there is a $t_{0} \in \mathbb{C}$ such that $\left(x_{0}, y_{0}\right)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$.
